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Abstract k
-
‘A data-driven method of choosing the bandwidth, h, of a kernel density .'
estimator is proposed. It is seen that this means of selecting h is asymp- ]
totically equivalent to taken the h that minimizes a certain weighted version i;
R
of the mean integrated square error. Thus, for a given kernel function, the P
bandwidth can be chosen optimally without making precise smoothness assumptions _’ .
on the underlying density. The proposed ‘technique is a modification of cross- j{;'
]
validation, b
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1. Introduction

Consider the problem of estimating a univariate probability density function,

AA
f, using a sample Xl""’ Xn from f. Let f = f(x, Xl""’ Xn) denote an estima-
tor. A common error norm is Mean Integrated Square Error, which is defined as

tollows. Let w(x) be some nonnegative "weight function." Define

A )
(1.1) MISE = Ef [£(x)-£(x)] w(x) dx.
An estimator which has been studied extensively (see, for example, the survey
by Wertz (1978)) is the kernel estimator which is defined as follows.

Given a

"kernel function,” K (with f K(x) dx = 1), and a '"bandwidth,' h>0, let

A 1 ¢ i
(1.2)  £(x,h) == | K(—)

The “bandwidth problem" consists of specifying h=h(n) in some asymptotically
(as n»x) optimal fashion. Under very precise assumptions on the amount of smooth-

ness of f, there are many results where h(n) is given deterministically to asvmp-

totically minimize MISE or some other error norm. See, for example, Rosenblatt

(1956), Parzen (1962), or Watson and Leadbetter (1963). Unfortunately, this type
of result is virtually useless in practice because the eptimal h(n) is a

function of the (unknown) smoothness of f. This may be seen especially clearly

from the results of Stone (1980) who deals with a continuum of smoothness classes.
Thus there has been a considerable search for techniques which use-the data to
specify h.

A popular technique of this type is the 'cross-validated" or '"pseudo-maximum-

likelihood" method introduced by Habbema, Hermans, and van den Broek (1974). This

is defined as follows. For j=1,..., n form the "leave oneout" kernel estimator,
A 1 E x-X, IR S ——
(1.3) f.(x,h) = —— K(—). . '
j (n-Dh 2, " h \ C !
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A
Then take h1 to maximize the "estimated likelihood,"

A
fj(Xj »h)

A recent paper by Chow, Geman and Wu (1983) contains some interesting heuris-
A A
tics and a consistency theorem for the estimator f(x,hl). Despite these encoura-

ging results, this estimator can be very poorly behaved. Section 2 contains
examples which illustrate some of the pitfalls that may be encountered by this
estimator. That section also contains a series of heuristicallv motivated modi-
{ications of tl(h)’ leading to the version that is seen to be asymptotically op-
timal in the theorems of section 3. The reader who is only interested in the
form of the optimal estimator should skip all of section 2 but (2.11).

Section 5 contains some remarks. The last section contains the proof of

the optimalitv theorem.

2. Modification of cross-validation.

To see how %(x,ﬁl) can be poorly behaved, consider the following example.
Suppose the density f has cumulative distribution function F so that for some
>0,

F(x) = e-l/x for xe(0,¢)

Such an F could easily be constructed to be infinitely differentiable. Let
X(I) and X(Z) denote the first two order statistics of Xl""’ Xn' It follows
from example 1.7.5 and Theorem 2.3.2 of Leadbetter, Lindgren and Rootzén (1983)

that,

s
lim lim P(X X, ) > —>—] = 1
0 7 W rogm?

But for compactly supported K (such as, for example, the "optimal kernels" of

Epanechnikov (1969) or Sacks and Ylvisaker (1981)), ﬁ;(h)=0 unless hzc(x(z)-x(l))
A

for some constant c¢. Thus, the cross-validated h1 must converge to 0 slower

than any algebraic rate.
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By the familiar variance and bias2 decomposition (see Rosenblatt

13 (1971)) the mean square error may be written: j
- 4
- A 2 1 2s ]

- E[f (x,0)-£(x)]" = 0(zp) + 0h™) ,
where s represents the amount of smoothness that is assumed on f. Hence, it is -

apparent that the estimator ?(x,ﬁl) can behave very poorly in the mean square
sense.

Analogous, though not so dramatic, examples can be constructed by taking,
for k large,

F(x) = xk for x € (0,g) ,

or by taking K no longer compactly supported, but with suitably "light tails."

These examples indicate that, even when f is very smooth and compactly supported,
ordinary cross-validated estimators can be drastically affected by data points
where f is close to 0.

A reasonable way to eliminate the above difficulty is the following. Find

DT
| RN

an interval [a,b] on which f is known to be bounded above 0. The assumption of s

..
P I

the existence of such an interval seems easy for the practitioner to accept.

Next redefine the estimated likelihood
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! and take ﬁ} to maximize ﬁ;(h). Note that cross-validation is performed only

r over those observations which lie in [a,b].
A A
{._ The estimator f(x,h,) has been studied by Hall (1982), although he seems to -
f - have arrived at it by considerations different from the above. The notation used
[

here (different from that of Hall) is due to Peter Bloomfield and will facilitate

f. the rest of this discussion. Hall's results show that, while the above patholo- £

~ \
E;& gies cause no problems, this version of cross-validation still behaves subopti- R
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mally with respect to the rate of convergence of mean square error. It is in-

SN

[
Al

teresting to note that the dominant term in his expansions depends only on the

behavior of f at the endpoints of [a,b].

. ,
Y

David Ruppert has suggested the following heuristic explanation of this end-

a a4 4

point effect. Note that if f'(a)<0, there will be more Xj's "just to the left"
of a than "just to the right." Hence if h is taken to be relatively large, more AJ

A
probability mass (of the density f(x,h)) will be moved into the interval [a,b]

AL A A -

which will thus increase ﬁ;(h). Hence there will be a tendency for cross-valida-
tion to "oversmooth' (i.e., take h too large). On the other hand, if f'(a)»>0,

then, by the same argument, cross-validation will tend to "undersmooth' in order

to keep as much probability mass inside [a,b] as possible. When this effect is "

taken into account at both endpoints simultaneously, it is not surprising that

Hall reports oversmoothing when f'(b)-f'(a)>0 and undersmoothing when

£'(b)-£" (a)<0. !
With this insight, Ruppert has proposed eliminating this effect in the fol-

lowing way. First for j=1,..., n define

(2.1 I ’%j(x,h) dx .

Next redefine the estimated likelihood

S fmding

i

A
f.(X.,h) 1
(.l__l__,g
A

fa,b] %) -
1 pj

A
Ly(h) =
j

[T =

A
and take h3 to maximize ﬁ;(h).

This estimator will now be investigated using heuristics developed by Chow,

':1
Y
Geman and Wu (1983). First it will be convenient to define
4 9 _ (b :
(2.2) p = ja £(x) dx , ‘
A A
p = f: f(x,h) dx .

E . . C .
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For these heuristics assume K is nonnegative and f(x)logf(x) is integrable. By

a Law of Large Numbers,

1, Ao 1
= logli(h) = =

n . )
jzl l[a’b](xj)[logf(xj'h)-logpl

Q

b A A
!a f(x)logf(x,h) dx - plogp .

But now by Jensen's Inequality,

A A
2.4y [0 EOD 1og PRGNy gy ¢ 1og(f) KR 4 < 0
pf(x) P

with equality if and only if,

A
f(x,h) _ f(x)

5 P

, a.e. on [a,b]

Hence
b A A b
(2.5) [, £(x)logf(x,h)dx - plogp < [, f(x)logf(x)dx - plogp.

Thus, ﬁ; is essentially using the conditional Kullback-Leibler information (the
left hand side of (2.4)) as a measure of how well %(x,h) approximates f(x). But
this measure has the disturbing property that it fails to distinguish between %
and f when they are unequal but proportional to each other.

Peter Bloomfield has suggested overcoming this difficulty by sharpening the
inequality®(2.5) using the following device. Note that for x,y>0,
(2.6) ylog(x/y) < x -y,
with equality only when x = y. Hence

plogp - plogp < b - p .

It now follows from (2.5) that
A
(2.7) IZ £(x)logf(x,h)dx - p < jg £(x) logf(x)dx - p ,

A
with equality if and only if f(x) = f(x,h) for almost all x < [a,b]. Now rever-
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sing the heuristic argument (2.3) it is apparent that the estimated likelihood

should be redefined as

A

A -p./p 1 (X.)
- j [a,b]

Ly(h) = ] )

i

n= s

A
: [fj(xj,h)e
and ﬁ4 taken to maximize ﬁ;(h).
Peter Bloomfield has pointed out that ﬁ;(h) may be somewhat simplified, from
the computational viewpoint, in the following way. Note that

N 1

Py = (n-1)" .Z.Q(Xi) R
; i#]
where
2.8 200 = £ Lk
Lo a(X = ./a h h v

Hence, by a Strong Law of Large Numbers,

]

n n
Texp(=1, . (X)p./p) = exp(= ) 1, (XD (a-1)"F T (X.)/p) =
j'—" [a,b] ] ] J=1 [a’b] J l;\]‘ 1

n
-1
exp(- ) o(X,)(n-1) 1
i=1 j;i [,

b X /D) 2

[¥¢

-
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Thus redefine the estimated likelihood

l[a b] (x')e'p(xj)

Note this also avoids difficulties about the fact that p ir ﬁ;(h) is unknown.
One last refinement will now be made. Many authors, starting with Parzen
(1962) and Watson and Leadbetter (1963), have noticed that the asymptotic pro-
perties of K can be greatly improved by allowing K(x) to be negative for some
x. The results of this paper apply to either this type of kernel or the non-
A

negative kernels which guarantee that f is “range-preserving." However the

proofs in this paper involve taking logarithms, so it is necessary to do some

truncation., Define, for xeR,

(2.9 £00h) = max(£(x,h),0

and for j=1,..., n,
Ay A
(2.10) fj(x,h) = maX(fj(x,h),O)

Now redefine the estimated likelihood

(2.11) L(h) = ) ’ e
J

A . .
and take g to maximize L(h). It will be seen in section 3 that the estimator

1
Ny [a
£.(X.,h)
J( ]

n 33

1

%(x,a) has excellent asymptotic properties.
An interesting side effect of the above truncation is the following. If
A A
for some h there is an Xje[a,b] for which fj(Xj,h)<0, then L{h) = 0. Hence,

A .
such an h can not be chosen to be h. Thus, since

A : n-1 2 ., 1
= — X., — K(0) ,
E(Xj,h) = fj(\J h} + - (0)
A A A A
if K(0)>t, then for j<A, f(Xj,h)>O. Hence, the estimator f(x,h) has the property
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s
that it is range-preserving (i.e.: >0) at each data point in [a,b]. Ol course,
the experimenter who requires that f be range-preserving outside the interval ,
(a,b] can guarantee this by taking K nonnegative.
)
3. Asymptotic Optimality Theorems _J
'
It is well known (see, for example, Rosenblatt (1971)) that MISE admits .A
"
. .2 , 4
the variance-bias” expansion .
-1, -1, . ; 2 -1, -1 :
(3.1) MISE(h) = n h ~(J£(Ww(v)dy) (/K(u)“du) + o(n "h 7) + sf(h), 4
]
2 ]
where the bias™ part is:
o 2
(3.2) sf(h) = [ K@)f(y-hu)du-f(y) ]~ w(y)dy. ]
v
Since the papers of Rosenblatt (1956) and Parzen (1962), expansions similar 1
to the above have been handled as follows.
Assume K satisfies:
]
JK(x)dx =1, .
(3.3) “xJK(x)dx = 0, §=1,...,k-1, ]
kaK(x)dx > 0. '
Also assume f has a bounded k-th derivative. By Taylor's Theorem, ';
J
1 4
. b )
4 (3.4) s (h) = h2E D (03 12wy dy kR (W du] 7k + 0 (0%
- 1, -1 2] )
F, Now to find the "optimal bandwidth", ignore the terms o(n h ) and o(h“") -
3 (which are of lower order, uniformly over h) in (3.1) and (3.4), and choose
L h to minimize
A .
- - el
o (3.5) an"Tn7h 4 Bntk, L
where A iand B are the obvious coefficients in (3.1) and (3.4). 3
1
While this solution tu the bandwidth problem is theoretically pleasing, -
{
}. it is useless in practice because the quantities A and B are unknown. The '
3
.
[ ]
1
¢ !
)
; ]
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wain theorem of this paper provides a means ol overcoming this difticulty, In
particular it is seen that (up to an additive constant), the function
')-I |
-2n  lovl.(h)

approximates MISE(h) in the same way as does (3.5) and so the h that maximizes
1.{h) is optimal in the same sense as the traditional "optimal bandwidth'.

The main theorem ot this paper also helds in a settiny more gencral than
that just discussed. In particular, it is well known that if 1 has only a bound-

ed p-th derivative where p<k then

9 1
s (h) =0, 1
.
and the optimal (at least in the sense of exponent of al Jaic converyence) h
mav be found by minimizing b
-1, -1 2 ]
o(n”h” ) + 0h Py 4
This is perhaps most clearly seen in the results of Stone (1980). It is 2
wlse well known that p need not be an integer by either using Sobolev space ‘
4
methods or using Lipschitz conditions on derivatives. This setting is more
Jdifticult to handle than the above because there one knows the optimal h is of .
. i
the form
, -1 .
3 —(2k~-1) 4
b cn .
‘ .
3
. and onlv ¢ need be optimized, while here the exponent is also unknown. ]

PY In the closely related setting of nonparametric regression ostimation,

q i
- Stone (1982) has posed the problem (see his Question 3) of finding an optimatl ;

hindwidth when p is unknown., The theorem ol this paper provides a solution j
\

° te this problem, in the above sense, bv showing that, b
. 3
. 4 ‘ )

£ 3.h) -2n logL(h) = 2R + MISE(h) + op(MISE(h)), ;
R
. -

: unitormly over h, where the constant R is independent of h and is given byv: :
?. n <
. (3.7 R=p-n ;1 X ) loef(X,) .

\ : b =1 [a,bj( J) uf( 1

" )
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The reason that the nonstandard wotation sf(h) (see (3.4)) has been intro- 4
d
duced is that it provides a powerful analvtic tool. In the setting of pk, the
usual Tavlor expansion techniques dre useless for showing results like (3.6)
bevause they onlv provide an uwpper bound on s (h)y. Thus the quantity sr(h) it-
. . - . . ~ . -
selt is used evervwhere in the proot, Another interesting role of s (h) is that
- 1 ‘
its tail behavior (as h-0) provides a measure of what is usuallyv called "smooth- ]
ness" of fwhich is more precise than the traditional Lipschitz conditions on
devivatives or indices of Sobolev Spaces. - 3
The main theorem of this paper will now be stated formallv. First a very i
A
mild restriction will be placed on the bandwidth h. For some small 5 > 0, de- 1
4
A — 3
fine the sequences ‘h ; and th | by
- n . 4
!
1+ - -
(3.8) h =n and h = n s
where here and below the dependence on n is suppressed. [t will also be assumed ]
that the densityv i satisfies:
l?
(3.9 f is bounded above 0 on [a,b] 1
4
(3.10) there are constants M, . > 0 so that for all x,v
k) -r(v) - M x-v 4
Another assumption is that the kernel runction K satisfics:
(3.11) JKix)dx = 1, ;
. —
(3.12) K is compactly supported, - 3
3.3 There cre constants M, . > 1 .o that ter all x,v ]
o
I . ' d
R{x)=Kflv) _ M x-v . d
Piaallv it will be assumed that the weight tunction in (i.1) is given by .J
RV wix)y = 1o wy /i, L
Sy E,
e
4
;
]
+
4
L L P i
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Theorem l: Under the assumptiouns (3.8) - (3.14), given ¢ > 0

!
- .

| —zn’llog'i(h)-R-msu(h)| .

lim P| sup_ VER T
no ihf[h,h] ! MISE(h)

=0

3y

A disturbing teature of this theorem is that it only applies to h in the

’
_— -
vanishingly small interval [h,h]. The above computations show that (by (3.10)) i
2y -
(3.15) sf(h) = 0(h" ), '{
and thus the optimal bandwidth is easily inside the intervial for o sufficientlw Y )
~ 4
small. Also Monte Carlo experience with L(h) (see Bloomfield and Marrcn (19Y84)) ]
1
indicates this assumption is not a problem in practice. Further reassurance ‘
along these lines is provided by »
~ “ 1
Theorem 2: Under (3.8) - (3.14), if h = h(n) denotes any sequencc of maxima B

~

of L(h), then

i) ﬁ -0 a.s. ’
~ _]-
ii) lim Tim P[h<cn-(2Y+l) 1 =0

¢c*0 n

A~

It should be noted that while Theorem 2 does show h > h (for & sufficiently

~ ~ ~

small) it does not show h < h or even establish the consistency of f(x,h). It

is intended only to give some backing to the above remarks. To save space, the vroof

N

- . v e
. N el
s oor 2t 2 e’ a_ & aa o ‘s a s 'sata

of Theorem 2 will not be given here. The interested reader can find it in

g -
8 the technical report Marron (1983). The proof of i) is based on techniques of .

Chow, Geman and Wu (1983) and it appears that these techniques may be further :i;
4 extended to establish the consistency of f(x,h). The proof of (ii) is based

on an order statistics result ot Cheng (1983).

4, Remarks
« Remark 4.1 The reader may be surprised that the "vanishing moment" assump- )
tion (3.3) is not used in Theorem 1. That theorem savs f(x,h) will have the

best MISE that is possible Tor the gpiven K, but how good that is is irrclevant -

CA . - R B ‘e ot T ot ® Lo . - e ' . .
BN - S - O ) .- . . U St .
W : R PPN PR A i 5 W DUR DI S Z PUR/ A, W DD . .o L P LT S | PR S T )
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to the theorem. Of course one should choose a reasonably good K.

Remark 4.2. The fact that optimality is achieved only for a particular
weight function should not be too disappointing. The one used here is quite

natural because MISE is proportional to the expected relative square error:

A
X)-f(X),2
e((HE0

| X [a,b]]

It is seen in Marron (1982) that this error norm is precisely the one required
for the application of density estimation to the classification problem. It may
be seen without too much effort that the indicator function in (2.1l1) may be
replaced by any bounded, measurable nonnegative function q(x), which is supported

inside [a,b], and the theorem will still be true with

w(x) = q(x)/f(x).

Remark 4.3. At first glance one might be disturbed by the fact that the
MISE that is minimized here is limited to the interval [a,b]. In somewhat simi-
lar settings, in the case of estimating a regression function, Gasser and Miiller
(1979) and Rice and Rosenblatt (1983) have observed that such a MISE is strongly
affected by the behavior of the unknown function at the endpoints and hence the
bandwidth which minimizes MISE can provide relatively poor estimates in the in-
terior of [a,b]. However, with very little effort, one may see that such an
"endpoint effect" does not occur in the present setting. This is because the
density f extends (and is smooth) outside the interval [a,b] and observations
outside [a,b] are employed in the estimator of this paper. Hence, the MISE of
this paper provides a very reasonable error criterion.

Remark 4.4 As with anyv asymptotic theory, it still remains to chech that
the properties described by the asymptotics "take effect" for sample sizes which

are not prohibitively large. Preliminary computations (for the paper Bloomfield

T

et

‘a
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-
and Marron (1984)) seem to validate theorem 1 and the heuristics of section 2. ;:
I
] ;
5. Proof of Theorem 1. -
y
This proof uses techniques developed in Hall (1982). It will be useful to N
define, for j=l,...,n ;*
o + .
f.(X,,h) - £(X,) f.(X,,h) - £(X,) ]
f, o= —bd J o J ) J
(5.1) O, o, .
J £(X.) J £(X,)

] J :

By Lemma 1 of Hardle and Marron (1984), letting sup and SPp denote supremum ’

over x:la,b] and he[h)_] respectively,
- . o N

sup spp f (x,h) - £(x) , < SUp SEP | f(x,h) - £(x) : » 0, ]
"
in probability. But by (1.2), (1.3), (3.11) and (3.13) letting s%p denote supre- R
mum over j=l,...,n, .
. ~ T
syp sup sup nh,f.(x,h) - f(x,h)! = B

syp syp spp nh, £, (x,h) . R

x-X, x-X,

= sup sup sHp;(n—l)_lz K 5 - K(—E—l)is
> i#3

< 2 sup 'K(u)| '
u.IR ’

Hence, by (3.9), using the notation #(A) to mean cardinality of the set

A= {j=l,...,n : Xii[a,b]},

note that

sup su |ff; < sup supla,! » 0,
h j:g J 7 h jeA' J'

e N .
e P
L. AJJ“_—A.J [ P W U S I L LAY

-‘”r*vr—v1-r'v'r-

j€ J
in probabilitv. Now for n=1,2,... define the event ’
Yn = 5L; = ;j for each hc[ﬁ,ﬁ] and jrA® -iF
- It follows from the above that
¢ U '

From (2.11), (3.7) and the above it follows that, for h-[h,ﬁ], on the event U,
- n




details are different but these are very similar to the

Hardle and Marron (1984).

Proof pf Lemma B:

Yirst, for n=1,2,...
ror o =0,1,... detine
- =-3/..-1
h = (nl - .n /‘)
then find 1. so that

T Pt JA Iite Bt Sate s 8 TxTTY VT A BT A T R A B te o b ."ﬁﬁ"“"“h“b""v'."\:
-14-

-1, -1 ¢ =

n loglL(h) + R =n Y ' (X, ) log(1+A,)-, (X,)+p] N

521 (a,b]™7] ] J .

’
-1 B 2 )
=n 1 (X0, -8 +r.) - o(X) + B
-Zl[ [a,p] Xbymadyrey) = o(g) =+ p] -

J

n -
- . -1 2 -1 —

R N G S T S I MR B AL .
j=1 3] jeA jeA J 1
where ri denotes the error term of the Taylor expansion of log(l+x). )
4
The remainder of this proof will be split into two lemmas: :1

’
Lemma A: Given ¢ > O, 0 b
— -1 :
n 1 X)), -c(X)+ :
i jzl[ (a,b] K30 857 (X )40 ] !
lim Pi{sup ‘ >el =0, )
n~e | h MISE(h) l ]

= - )
- 3
Lemma B: Given £ > 0 .ﬂ
- _ - :
| ©n 12 A? - MISE(h) | | =

. | :
lim P [sup —d-a > o | = 0. ’{

e | h ! MISE(h) | —J v
: "
It is enough to establish these because from Lemma B it follows that, for ¢ > C, .
Ea
— - . 1
lim P |sup [;_ E r. [ >, =0 . R
> L,h | JeA . | "f

I MISE(h) l
The proof of lLemma A is quite similar in spirit to that of Lemma B. Some

Hence, this proof is omitted.

proof of Lemma 2a in

partition the interval [Q)F] by the following means.
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by <RIy 3

and redefine hL to be h, Note that the dependence of h. and L on n has been ’ i
LN

suppressed. Note also that

-1 -1 -3/y
(5.2) }hQ - h ) s ;
and that, as n > «x, -
(5.3) L = o(nl*3/y,

It will be convenient to adopt the shorthand:

T n
(5.4) A(h) = L?‘ )

B .
Y
. '
L. .« .
Eatna'a alala 2

-
(Xj)A§ - MISE(h)I MISE(h) t

.|

ll[a)b]

The idea of this proof is to show that A(h) converges uniformly over the 'grid
points", h,, and then to "fill in the gapd'with Lipschitz continuity. More form-

ally, for ¢ > 0, note that

P[sgp]A(h)! > el <1+ 11,
where the behavior at the grid points is controlled by
I = Plsup|a(h,)| > </2]
£ £

(where s?p denotes supremum over Ji=l,...,L), and the behavior between gridpoints

is controlled by

IT = P[sup A(h) = A(h )| > /2]

“»h
(where Eug denotes supremum over 2=l,...,L and hC[hL_l,hg]). The proof of Lemma
B will be complete when the following lemmas are established.

Lemma Bl:

lﬁamna B2:

I1 ~ 0.

Proof of Lemma Bl:
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]

hdede Aoaca

Note that by an obvious extension of the Chebychev Inequality, for M=2,4,6,...

Abd o

- l-'-.-

I4 -
P[%wplA(hl)l> 6/51 < 2 P lA(hi){ ) u/Z] <

- {=1]

At a A s & A,

-

< L sup P[|ACh,) | > €/2] <
) X
5
M »
< L sup E(ZA(hz)/e) . g
X
Thus, by (5.3), it is enough to show that )
sup 23 Yeamn™ > o,
for M sufficiently large.
-
Next observe that, by computations similiar to those leading to (3.1), ?1
-4
E(A(h)) = [H[g.(X.,h) - f(X.)]zf(X.)_zl (X,)) - MISE] MISE! = ‘}
T3 J 3 [a,b] "] )
.‘1
13

1

]Zw(x)dx - MISE] MISE = =

[Ef[§j<x,h> - E(x)

L= ' (S E(y)wiy)dy) JK(u) %du) + o(n h7h) + sf(h)-MISE]MISE‘l,:f

1]

and so

sup E(A(h)) = O(n_l) .

Now using a cumulant expansion (see, for example, (3.33) of Kendall and Stuart
(1963)) of the M-th centered moment of A(h), to complete the proof of Lemma Bl
it is enough to show that, for M sufficiently large, for m=2,...,M,

sup cum (A(h) s+ ACR)) = o (AU IFIIm/M,

where cumm denotes the m-th order cumulant.,

Observe that from (1.3), (5.1) and (5.4),

2 . -
T on X.-X, -
A(h) = fn"ﬁ (;n-1>'1§ % K(——D)-F(x) | rx )% (X,)-MISE |MISE™! = '
j=1] 14 h ] J (a,b] 7]

- e . - . . . ' NN . . N NN v
o, LTy . e e e PYPRY . : PP S YN N W WY i L
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K
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-8 ‘ B
=n ) | YV, -1,
‘ Rt B U o I
, =l i3 7
1
X where, by (3.14),
_1T1 X =X, -1 1. 1
(5.3) V.. = (n-1)" "= K(——2) - £(X ) X)) 3w(X.) MISE
ij h h j j j

.

S , by using linearitv properties of cumulants (see, for example (iv) and (v) of
theorem 23,1 in Brillinger (1979)) the proof of Lemma Bl will be complete when it

is seen that, for M sufficiently large, m=2,...,M,

r;( l+3/\')m/M)

bl

~m
(5.6) sup n 1)) cum (V, qos osesesV. o Vo) = 0of
h jid' mohd nln tmdm

where E denotes summation over jl""’jm =1,...,n, and where Z denotes summation
N i

over il,...,im = 1,...,n subject to the restrictions il#jl,...,im#jm, and where

denotes summation over ii,...,ié = l,...,n subject to the restrictions
1]

P

P . : 7 .
11#31,...,1m#3m .
By another of the properties.of cumulants, note that many of the terms in the

summation (5.6) will be 0 because of the independence of X .,Xn. The nonzero

120
terms will be handled by grouping them according to pattern of indices and pro-
ceeding casewise.

First note that by the usual moment expansion of cumulants (see, for example,

(3.39) of Kendall and Stuart (1963)), each cum - may be expanded into a linear

combination, the tirst term of which is

(5.7) EIV, o Voo sV, V1,
191 1 nim ‘mim

and the remaining terms of which are multiples of products of moments of all the S

'. various partitions of )
. ’
{v \Y st L,V \Y b -,
1.4, i3 iy it \
14 1 mn tnlm .
.
Al
] L
4 K
3 y]
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;]
Next a means of counting the nonzero terms in (5.6) will be developed., -
. g
Since special attention must be paid to duplications among il,...,im, ii,...,i&, ;
1
and j;,...,j; , the following relabeling of the indices will be made:
(i) Suppose that r is the number of jl""’jm that are distinct. Relabel )
—
these indices (each time they occur) by jl,...,jr. E
N
(ii) Suppose that the number of il,...,im , i{,..,,i& that are the same as )
-
- . "4
one ol jl,,,,,i is s, Each of thesc¢ will now be denoted by the appro- _;
I 7
priate j. 1
(iii) Suppose that, out of what remain of il,...,im, ii,..,,l; that of them are
distinct. Denote these (each time they occur) by il,...,it. Also let s, -J
r. denote the number of times the new i1 appears, and similarly for SpreeesS . =
' . $
X Now by rearranging the V's, note that (5.7) may be rewritten as :
T
"4
E(V..'s Vi seeev, 's] .
1 ]J lt‘] "
where "Vii's” denotes the product of all V's whose first index is one of Fpoeeendps B
-
3. -
and where "Vi .'s" denotes the product of all V's whose first index is il, etc. -]
1J :.\
.. - 1] : I3 I3 ‘!
Since there seems to be no chance of confusion, both notations will be used in
1
Y
the following. ,1
" 4
Now group the nonzero cumulant in (5.6) according to the pattern of duplica- )
<
tion of indices (eg: cum (V_ _V v,V is in the same gro as cum,(V_,V v,V . )
(en: cumy (V) VipoVyuVyy) 1S same group as cumy (Vo,VoqVy Vgy)) .
" Note that the number of cumulants falling into each group is (as n = ") of the 1
. r+t . S e Co . ]
- order O(n ). So to verify (5.6), it is enough to show that, for each duplica- ;
*‘ tion group, -4
f ]
r+t- -(143/Y)m/} :
b sSup n t M eum ( ) = o(n(1 J/\)m/w) , l
1 h m 1
) where M is sufficiently large, and m=2,3,...,M. |
o 1
To this end, define the set '

" . L . - - J
e m o a e A atat e e eiat et e m o a.atatatata riateciaatallalatetaltlelatle ol Al n il mlo VoL A 4w e
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iy
o= X, , X, 1, ’
Jl .]L B
and let E{*,J] denote the usual conditional (on X, ,...,Xj ) expectation opera- ¥
1 t ]
!
tor. Now letting B denote a generic constant, by (3.9), (3.13), (5.5) and in-
tegration by substitution, 3
—-m . . +t- .
AR s v teeeev. )l = TP IR, s BV, L s)alecELY, Ls|ID T ]
JJ 1.3 L] JJ 1.3 1) .
1 t 1 t N
o —s =(s,-1) -s (s -1) R
r+t-m n °h ° n 1h 1 n th t i
% Bn 572 sz s 72~
c N s g
(5.8) MISE MISE 1 MISE & :
E
—-(3m-r-t). —(2m- - - - —(2m-r- - 1
= B~ O T 2O k™™ o B (ah) T™ISE™™] (uh) T2 ]
While this bound is sufficient to handle many of the patterns of duplication of f
indices, refined computations of several types are required for others. )
To see what cases are necessary, note that in (5.6), the cumm( ) are non-
zero onlv when no subset of the arguments of cum_ is independent of the remaining
arguments (see, for example, (iii) in Theorem 2.3.1 of Brillinger (1979)). In 1
other words, there must be at least m-1 pairs of arguments of cumm( ) which k
have an index in common. Thus, for each nonzero cumm( ), the following counting ]
argument is valid:
4 m-1 < #(pairs with a common index) = 1
< #(pairs with an i in common) + #(pairs with a j in common) < ]
4
(5.9 < [*(i's available) - #(distinct i's)] + ]
b .
4
A .
- + [#(Vij‘s) + #(j's available) - #(distinct j's)] - 5
| ’ -
< [(2m-s)-t] + [stm-r] = 3m-t-r. )
s .
E It follows from this that i
F (5.10) 2m-t-r - -1.
®
L The bound (5.8) will now be either used or refined in a casewise manner.
3
Case 1: m-r z m/12 and 2m-r-t > 0
-
p
L
r.
}
}
t,-A v ate . mlat e aia M a a4 mta. s ca & beaiatala. aama catatoaro s P Y S . . \.“;L\.\; Canas
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e 1
. K
It follows from (3.1) that :
4
C (5.11) sup () "'MrsEh) ™! = oq1). y
Thus from (3.8) and (5.8) :
+t- - 2 -5 2 ‘
sup at"t mlE(V..'S V, 'seeeV, ') o= O(ﬂ‘m/l ) = On m/1 ) . -
_i h 3] llJ 1".J ',1
.}, But similar computations show that the same bound mav be obtained for the other ?
products of moments appearing in Cumm( ). Thus -]
. ¥
+t- - . -(1+ )
‘ sup o' U Meum (V. . V., s..aV. V., )| = 0(n Om/]z) = o(n (1 5/()‘“/"1), 1
) h L NS R 'wdm mdm
by taking M sufficiently large.
° Case 2: m-r = m/12 and 2m-r-t = -1 . - 4
‘ 1
Here the busic bound (5.8) necds some modification. Since r < m, note that
m-t = r-m-1 < 0
and hence

t > m.

Thus at least two of SIRERRTLN must be equal to 1. Now relabel il,...,it so that

Se_q and s, are both 1. The bound (5.8) may now be modified to give

B X
Naet/'|
i

.

r+t-m E(V, 's V. .'seeey 'g)l o<
n LV Ts i) g3 %=

]

;_ -5, -5 o8 _(Slnl) S-2 _(St—Z_l) ]
Y . gpftt-m n h . n__h e )

- - WISFS/Z 51/2 bt—Z;z R

’ . MISE MISE B

- EE[V, j[J]h[vi j.,J]I. Ty

® t-1 t

But from (5.5) 73

— . | -1 I._,-l X 'I_X AP —} B -1 1 -1,

E[vij|J] = (n-1) ’JE'K('h Jf(x)dx - f(Xj)'r(Xj) w(Xj) MISE . i

° : . N ’

: Thus, bv (3.2) and integration by substitution, ;

|

A 4 -

-t .- - - -~ oo B - e e, e . Lo e . L.

L_'" e e e, e ) Lo e e L O AN -, . <
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(5.12) E(E[rijiJ]Z) - (n-l)_lsf(h)MISE(h

and so, by the Schwartz Inequality,
EE(V. . JIE[V. ,]J] < (n-1)"
Lot e

Hence, from (3.1)

r+t
sup n i i
h JJ lJ t

(5.13)  su B[(nh)_(m-l)si(h)
1

- O(lelz) - o

n-ﬁm/lZ)

But similar computations show that the

products of moments appearing in cumm( ).
4t -
sup n" t m,cum (V. . V. ,. ,...,V
h LS R NS B3t
by taking M sufficiently large.
Casc 3: m-r < m/12 and 2m-r-t - m/1l
It follows from (3.8) that
_ _x
(nh) L. n
Thus, since r © m, by (5.8) and (5.11)
spp aTFUTR (UL T v Teeee v Ts) ! =
il 1] 11.] 1t4
Hence, as above,
r+t-m | yr
sup n Ceum (V.o Vo, L, V. .
h mo b iy Lndm

for M surfficiently larye.

Case 43 m/12, 0 < 2m-r-t -

m=r -

TR, 's VL stV s

7L,

]sf(h)MISE(h)—

MISE(h) ™)

1

Thus
. V.. )i 0(
tdm tedm
2

O(n_:m/lz)

—~I y

V... )| = o(n vm/lz)
i'j

m”m

m/12, and s > m/3 .

nh)—(Zm-r—L+1)hm—r

same bound may be obtained for

= 0(

<

the other

- O(d{1+3/Y)m/M

-(1+3/5)m/M
n ),

For this case, consider the factors E[Vij'le] appearing in the computation

),

T

-
P | o

.
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(7.8 . It will be convenivnt tuv apply the name "singleton" to those tor which

the corresponding si=l. Note that

t - #(singletons) < #(i's available) - #(places to put i's) = (2m-s)-t
Thus,
(hLTa) “{~ingletons) > 2(t-m)+s > 2(m-r-m/12) + s - -2m/12 + m/3 = m/6.

Now it is desired to use the computation (5.12) to generate extra factors of
s{(h) from the above singletons. To do this,foreachd jl""’jr‘ at most 2
singletonshaving that particular j may be employed. Let u count the number of
singletons that mav be used. Since

r = #(distinct j's) > 1lm/12 ,
note that
(5.1 un/6 - m/12 = m/l2.
Now relabel il""’iL so that the above singletons are indexed by i _ , 1

R LR

Note that the computation (5.8) may be refined to give

e CULIR SRR T )| s
ij ] i3
o -5, —(s.=1) -s__~(s__ -1)

< Bnr+t-m n °h S n 1h 1 n t-u t-u

= s/2 s /2 T s, /2

MISE MISE | MISE '
E(E[V, J) BV 1D s
Lt-utl 1ed
- Bn-(3m_r-t)h—(2m—t)5f(h)u/ZMISE_m <

B[ (nb) T™MISE™™] (np)~ (2MTTm0) = (mmn) oy ym/ 24

f
But now, from (3.8) and (3.15), as above
+t— _9.. R,
sup nftt m|E(V..'S V., ['s*vV, 's)| = O((hZ,)m/ZA) = 0(n Gym/IZ)
h 33 7 T3 1]

,.-
e et e

-
P

P U BN Sy
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Thus, as above,
sup ' Cumm(vi ; vi'j ,.,,,\'i ; \,’1,,j ) = (>U1'lyn1/12) _ O(n—(\li-'}/'r)m/f‘l)
11 1°1 m'm m’in
Yor M sufticiently larve.
Case 5: m-r < m/12, 2m-r-t = -1, nd s > m/3.

This case is an extension of Case 4 in the same way that Case 2 extends Case
I. Note that in the present case, the computation (5.14) can be improved to
#(singletons) > 2(m-r+l)+s = 24m/3 .
Thus (5.13) can be improved to
u 2z 2+m/4 .
The extra two singletons are used to generate an extra sf(h) which is used as in

(5.13)., The result is:

-3/ ) /M

—fym/
sup Cu%‘(vi A Vi,, Y| = 0o(n 4) = o ),

h 191 1-1 mjm m”m

for M sufficiently large.
Case 6: m-r < m/12, 2m-r-t > 0, and s < m/3 .

First recall that cumm( ) is nonzero only if at least (m-1) pairs of argu-
ments oi cumm( ) have an index in common. Let v denote the number of such pairs
which have an i in common, but different j's. The counting argument (5.9) mav
be modified to pgive

m-] £ v + #(pairs where common index is a j) 2 v + [s+m-r].
Thus,

(5.16) v - m-1 - [stm-r] > m=-1 - [m/3 + m/12]) = 7m/12 - 1.

’

L,;-;J

. -
PSR RN B |

—t s T

-

——d hd

l e a A g e

o

Note that o "pair with an i in common, but different j's " arises from L
1
havine factors Vi, and Vii' (tor some j#j'). Now given X, ,...,X. , define the K
A
J : i iy !
q
randem variable 7 bv: N
i
. . . ! : o X »
Z = =(such pairs with ng—X.,‘ < 2K h), j
, SN .
where K denotes the length of the compact support of the kernel function K. Cd
R
L
- ‘,AL'.‘.;..- .t .;‘ 18 A \_‘_-' M -, 2 vL e he a ) . oy 4\ i - A A‘._A by ‘: 't ‘.‘. . - -_.“l_‘; A:h.j
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Note that, for z=0,...,v, ]
[ 4 Pli=z] = O(h™) . ~
Al=o note that if one of the above pairs comes Lrom Vi i and Vi i (for example) :
1 112
* "’
and it 'y - X, > 2k h, then o
ﬁ il j2 ) 1
Gy 9 @ i -
C F(VL 's J] = I[Vl Vi . Vi J) = JEIV, (%) V, (x) JIf(x)dx , ;
':‘ where qy q2 ~ 0, and where N 1
} V.o = (n-D Ty K(——) -~ (X)) (X)) Aw(X,)MISE * .
} i h h i j j
i From which it follows that ) j
¢ ]
3 q1 qr
E(V, .'s'J]: = J B[V, (x) "=V, (%) [J1] f(x)dx = Y
ij - j j ;
1 1 r ;
L‘ )
\ =7 dx + [ dx + =
i {x:x-X, |<K*h} 1x: Ix-X, [.K*h} j
: 1 )
- 4 7 dx <
ik ?x-x,f>K*h and 'x-X, | SK*h ) [ ]
d ol 5 )
-3, —(s,-1)
41 4 . ql+q2 n 1h L
< h Jdx + h .dx + h Jdx < Bh - “*"——2:7F7—~-
MISE ! -

Bv similar computations, for each of the above pairs Vi‘ and Vi"’ on the event
’ J J

’in—Xj,l > 2K*h} at least one of the E[Vij'slxj's] allows the factoring out of

- 1
an additional power of h. Thus when 4=z, an additional hYoo mav be used in the D!
® «
basic bound (53.8). Letting E( ;Z=7z) denote expectation only over the event K
‘7=z, (5.8) mav be modified *o
+L-m . !
n* lE(V,.'s Vi ,’s"'Vi el °
i . o ,
v r+t-m
! ) n E(V. ' Vi JlsteeV U Tsg Z=2), < .
:’ Z:U I] 1.: t‘ "
¢
3 ®
1
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Thus,

sup nr+t—m |E(V,,'s V., .'s***V, 's)| = O(n-iv)
h JJ 1, 1tJ

At first glance, it looks like the above techniques may not be usciul for

handling the other "products of moments" which appear in the expansion of cumm( ).

&

This is because the above effect of ''generating a factor of h'" from E[ij's]J]

L

will be lost when Vij and Vij' fall into different subsets of the partition. )

e

But this is actually not a problem, because splitting into partitions already

venerates extra factors of Hj (from integration by substitution), so that the

above bounds still apply. Thus, using (5.16) and the fact that m > 2, )

r+t-m
sup n jcum (V. . V.,. ,...,V, . V_,. )| =
LS E R B Y

_S _ _ . ,
=o0m™"Yy = o(n 6m/12) - o(n (1+3/,)m/M) , |
=
for M sufficiently large. o
<y
Case 7: m-r < m/12, 2m-r-t = -1, and s < m/3 . =

Recall that Case 5 extends Case 4 in the same way that Case 2 extends Case

.
1. The present case extends Case 6 in the same way. The details are straight fj
= torward and hence are omitted. fi
r’ Now by (5.10) all cases have been exhausted. This verifies (5.6) which 21
g completes the proof of Lemma Bl. :3
L.
F. Proof of l.emma B2: [j
L To check that Il -~ 0, from (3.14), (5.1) and (5.4) write .
| A = N(MISE() ™! - 1,
'. where ',
! y

e o
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n ~
N(h) = 0 b T [, (X ,h) - PO TN w,).
PR j B
Note that for «=1,...,L and hp[hQ_l,hQ],

INCh)-N(h.,)|  |N(h.)|  |MISE(h,)-MISE(h) |
A(h) - At | & ——— + — :
v MISE (h) MISE(h) MISE(h)

Thus, by Lemma Bl, the proof of Lemma B2 will be complete when it is seen that

(5.17)  sup |N(h)-N(h,) IMISE(h) ™! > 0
i,h *
in probability, and that
(5.18)  sup |MISE(h.)-MISE(h) |MISE(h) ' + o.
<~

¢,h
To verify (5.17), note that by (1.3) and the algebraic identity a2—b2=(a—b)(a+b),

n ~ ~
IN(h)-N(h ) < n 'Y [ (fL (X, h)-F, (X, ,h
N(h)-N(h )] < n jle( 5% goh) = (X,

)

. - -1
f P, ’ . .)h - . [ . }
( j(‘j h)+fJ(XJ 2') 2f(XJ))f (XJ)w(Xj)I <

B 1 1 X.—Xi 1 X.—Xl
sn ) (n-D) ; = K- = k)| -
J= i J L €

. /sup sup -1
( X fj(x,h)+ N fj(x’hi) + 2f(Xj))f (Xj)w(xj)

But now bv (1.3), (3.8) and (3.13), for B a generic constant

sup sup t,(x,h) < sup sup i;K(u)f < Bh_1 = Bnl—A,
h x I h u h - =

and also by (5.2)

R S PO T )

Py

PR LA

. AL e e e e i -

Aa '2’sa "a. s a 1 A

1 . y-x 1 V=X, . -1 -1. | -1 -1 -1
4 K& - h,K(~ET). S h-h sup IK(u)| + hy " MR T-h T s :
(5.19) !
‘3 e - = )
< B(n I 40! (n 3/Y)Y)- |
.
It follows from the above and (3.1) that ;
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=27~

]N(h)-N(hg)! pn- 1728
sup < g}

<,h  MISE(h) n

To check (5.18) note that by the above method

|MISE(hQ)—MISE(h)I < E]E(x,hi)—g(x,h)]'

But by (1.2) and (5.19),

|f(x,h£)—f(x,h)] < Bn 270,

Thus, since E|f(x,h,)| is bounded,

]MISE(hQ)—MISE(h)I 28
-1

sup <
¢,h MISE(h) n

+ 0.

This completes the proof of Lemma B2 and hence also that of Lemma B.
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